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Interrupts 
 
Interrupts 
 
Interrupts are like receiving a telephone call while you are in a face-to-face meeting: 

• The phone rings (ie, an interrupt is sent) 
• Tell the person you are meeting with to please wait 
• Answer the phone, provide a response (eg: take a message), hang up 
• Resume the meeting, picking up where you left off. 

Efficiency demands that you: 
• Keep the phone call short 
• Don’t allow a second call to interrupt the first call (no call waiting) 
• Satisfy the caller so they do not immediately call you back after hanging up. 

 
From a computer system perspective, the CPU is always busy “in a meeting” by running 
your main program: it must fetch the instruction, execute it, and then advance to the next 
instruction. 
 
To get the attention of the CPU, a device can interrupt the currently executing 
instruction by sending a logic ‘1’ signal to a dedicated interrupt request input pin on the 
CPU. This may happen when a KEY was just pressed, or when a time delay elapses. 
 
The CPU usually has a handful of these interrupt request pins, often named IRQ0, IRQ1, 
…, IRQn. The computer system hardware designer connects each device to a different 
IRQ pin. In the UBC DE1 Media system, IRQ3 is connected to the COUNTER device. 
 
Roughly speaking, whenever an IRQ pin is set to a 1, the CPU stops the current 
instruction before it is executed, and then jumps to a special subroutine called an 
interrupt service routine or ISR. Each device gets its own ISR, and this subroutine 
responds to events only from that device.  
 
The ISR: 

1. cannot accept any input parameters, or return any result 
2. must respond to the device and handle the event; it can do this by reading the 

state of the device and various memory locations, then writing new values back to 
the device or memory locations 

3. must clear the source of the interrupt, by telling the device to stop sending it 
4. must not pause or delay unnecessarily; it should be quick to exit 
5. must not be interrupted by another device. 

 
Keep in mind that the ISR is only for hardware device interrupts. The only way the ISR 
should be executed is by having the device raise its IRQ pin to ‘1’. That is, the main 
program should never directly call the ISR as a subroutine.  
 
After the ISR completes, it returns to the main program at exactly the instruction that was  
interrupted, and it again attempts to execute that instruction. 
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Interrupt Issues 
 
With interrupts, it is possible to get stuck in an infinite loop. If you forget step (3), 
clearing the source of the interrupt, the device will still be sending a 1 on the IRQ pin 
when the ISR finishes. If this happens, the CPU will be immediately interrupted after 
exiting the ISR; it will not get a chance to run the main program at all. In this case, the 
program gets stuck in an infinite loop that repeatedly runs the ISR. 
 
While an ISR is running, it must not be interrupted by another device. As a result, 
interrupts are automatically disabled just before the ISR starts, and they are automatically 
re-enabled just after the ISR finishes. This is also why an ISR should never wait or 
delay unnecessarily. If another device sends an interrupt to the CPU, it must wait for the 
current ISR to finish executing completely before its own ISR can be executed. Get your 
business done quickly, and get out! 
 
Since an interrupt can occur at any point in your main program, the ISR must not modify 
any CPU registers. Otherwise, the main program will behave unpredictably, as register 
values could change at any time and alter the execution of the program. To assure that 
registers will not be changed, the interrupt process will save and restore register values 
from the stack. This process is explained next. 
 
Interrupt Process Details 
 
A specific sequence of events takes place after an interrupt is sent. The start of this 
sequence is automatically done by the CPU hardware itself, and then it quickly passes 
control back to software to finish the sequence. 
 
Upon receiving the interrupt signal any IRQ pin, the CPU hardware: 

• disables interrupts 
• stops executing the current instruction; this instruction must be re-started later 
• saves the current program counter into register r29, named “ea” exception return address 
• jumps to the instruction at address 0x20. 

At this point, the rest of the sequence follows by executing a small software routine 
called the exception handler. It starts at address 0x20, and is included in 259library.c. 
The exception handler is software, but it always does this: 

• saves all CPU registers on the stack 
• determines which interrupt was triggered, and calls the corresponding ISR 
• executes the ISR 
• restores all CPU registers from the stack 
• finishes with the “eret” instruction 

o The ERET instruction re-enables interrupts and returns to the instruction 
pointed to by “ea”, the point at which the main program was interrupted. 

 
Notice that interrupts are disabled throughout the entire sequence. In theory, it is 
possible to re-enable interrupts inside the ISR. However, this is an advanced use of 
interrupts that can be very difficult to debug. 
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Programming with Interrupts 
 
To begin using interrupts with any CPU or device, many things must be configured: 

• CPU 
o The CPU must be configured to receive interrupts (in general). 
o The CPU must be configured to receive interrupts from each device. 

• Device 
o The device must be configured to send an interrupt. 
o Optionally, devices usually have configuration options that specify exactly which type of 

event(s) should send an interrupt. 
In addition, the program must abide by certain restrictions: 

• One ISR must be written for each device. 
• The ISR must clear the cause of the interrupt before exiting. 
• The ISR must be registered (associated) with the device’s IRQ pin number. 

 
Interrupts Example – Using the COUNTER Device 
 
Programming with interrupts involves a lot of details. We will start with the simplest 
possible interrupt example, shown below in Figure 1. 
 

#include "259macros.h" 
 
/* global variables */ 
int counter = 0; 
 
/* This ISR will be called every 100ms */ 
/* Display a counter on the red LEDs */ 
void counterISR() 
{ 
 /* remember: no waiting in an ISR */ 
 counter++; 
 *pLEDR = counter; 
 
 /* clear source of COUNTER interrupt before returning */ 
 *pCOUNTER_STATUS = 1; /* Device: send interrupts, clear existing interrupt */ 
} 
 
/* This routine configures device-specific details about interrupts */ 
void enableCounterIRQ( int interval_cycles, ptr_to_function newISR ) 
{ 
 registerISR( IRQ_COUNTER, newISR ); /* specify which ISR to call with COUNTER interrupts */ 
  
 *pCOUNTER  = -interval_cycles; /* initial counter value */ 
 *pCOUNTER_RELOAD = -interval_cycles; /* on overflow, start with this value */ 
 
 *pCOUNTER_STATUS = 1;  /* Device: send interrupts, clear existing interrupt */ 
 enableInterrupt( IRQ_COUNTER ); /* CPU: allow it to receive COUNTER interrupts */ 
} 
 
 
int main( int argc, char *argv[] )                              
{                                          
 /* CPU: clears all interrupt enables for individual devices, then enables interrupts */ 
 initInterrupts(); 
  
 /* Device: set up COUNTER to interrupt and call counterISR every 100ms. */ 
 enableCounterIRQ( 100*ONE_MS, counterISR ); 
 
 /* Main loop is busy doing nothing, forever */              
 while( 1 ) 
  ; 
 
 return 0; /* never gets here */ 
} 

Figure 1. Interrupts example in C using COUNTER. 
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The purpose of this program is to increment a global variable counter every 100ms, and 
to display this value on the red LEDs. The COUNTER hardware device is configured to 
generate an interrupt precisely every 100ms, which is after 5,000,000 clock cycles have 
elapsed (assuming 50MHz clock). 
 
The main program sets things up, first by initializing the CPU and then by initializing the 
device. First, the subroutine initInterrupts(); is used to initialize the CPU to receive 
interrupts in general; its source code is provided in 259library.c. Second, the subroutine 
enableCounterIRQ(); is used to initialize the COUNTER device to send interrupts; it 
will be explained shortly. Finally, the main program enters an infinite loop, where it 
continuously does nothing. This loop is meant to simulate doing “real work”, but we kept 
it as simple as possible by removing the work! 
 
In enableCounterIRQ(), all device-specific features are configured. The parameters for 
enableCounterIRQ() represent two values: a time delay, 100ms, and the name of the ISR 
to be used with the counter device, counterISR. The time delay value is used to initialize 
the counter (described below). The second parameter is actually a pointer to a function; 
the original name is lost, but the new name newISR simply points to counterISR. A 
pointer to a function is just like any pointer – in this case, it is the address of the first 
instruction of the ISR subroutine. The call registerISR( IRQ_COUNTER, newISR ); 
associates the pointer to counterISR with the interrupt pin defined for the COUNTER 
device (IRQ3). The value of IRQ_COUNTER is a constant (3) that is defined in 
259macros.h – its value depends upon the hardware design, so it must not be changed!  
The registerISR() subroutine is provided in 259library.c. 
 
The operation of this program is heavily dependent upon details of the COUNTER device. 

• The counter always counts up by 1 every clock cycle, at a rate of 50MHz (20ns). 
• When the counter wraps around (ie, counts past 0xFFFFFFFF), it will be automatically re-

initialized with the value stored at the COUNTER_RELOAD address. Normally, the value stored 
at COUNTER_RELOAD is 0, allowing the counter to wrap around to 0. 

• If 1 is stored at the COUNTER_STATUS address, the counter sends an interrupt to the CPU by 
setting pin IRQ3 to ‘1’ when the counter wraps around (increments past 0xFFFFFFFF). 

• The process of writing any value to COUNTER_STATUS clears the current interrupt by resetting 
the IRQ3 pin back to ‘0’. Thus, writing a 0 to COUNTER_STATUS clears the current interrupt 
and disables any further counter interrupts, whereas writing a 1 clears the current interrupt and 
leaves counter interrupts enabled for next time. 

 
The enableCounterIRQ() routine configures the counter in three ways: 

• The counter is initialized with a value of -5,000,000. This allows it to count up towards 0. It will 
ultimately wrap around after 100ms. 

• The reload value is also set to -5,000,000. After the current counter wraps around, this will set the 
time duration for the next wrap around to be 100ms. 

• It enables interrupts by writing 1 to COUNTER_STATUS. 
 
Note that the process of merely writing any value to COUNTER_STATUS will stop the 
counter from sending its current interrupt. Thus, writing a 0 will clear the current 
interrupt and disable new interrupts from being sent; writing a 1 will clear the current 
interrupt and enable an interrupt to be sent the next time the counter wraps around. 
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An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the 
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes 
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this 
restores tire traction. For this problem, write a main program and interrupt service routine to:  

• Detect wheel spin. First, your program should continuously poll KEY3 and count the number of 0-to-1 
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly, 
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the 
next 0-to-1 transition occurs.  However, you don’t know exactly when it will occur.  Hence, the polling of 
KEY3 must be done frequently enough to not miss any transitions! 

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to 
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected, 
suggesting the wheel is still spinning. If fewer than 5 transitions have occurred, alternately apply & 
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning 
so you should apply the brakes again for the next 100ms. 

#include “259macros.h” 
 
/* global variables */ 
int counter = 0; 
int brake_flag = 0; 
      /* this ISR will be called every 100ms */ 
int main(...)     void cntrISR() 
{      { 
    initInterrupts();     /* remember: no waiting in here */ 
    enableCounterIRQ(100*ONE_MS,cntrISR);     
 
 /* write your code below */    
 while(1) {      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 } 
 
}        } 
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An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the 
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes 
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this 
restores tire traction. For this problem, write a main program and interrupt service routine to:  

• Detect wheel spin. First, your program should continuously poll KEY3 and count the number of 0-to-1 
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly, 
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the 
next 0-to-1 transition occurs.  However, you don’t know exactly when it will occur.  Hence, the polling of 
KEY3 must be done frequently enough to not miss any transitions! 

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to 
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected, 
suggesting the wheel is still spinning. . If fewer than 5 transitions have occurred, alternately apply & 
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning 
so you should apply the brakes again for the next 100ms. 

#include “259macros.h” 
 
/* global variables */ 
int counter = 0; 
int brake_flag = 0; 
      /* this ISR will be called every 100ms */ 
int main(...)     void cntrISR() 
{      { 
    initInterrupts();     /* remember: no waiting in here */ 
    enableCounterIRQ(100*ONE_MS,cntrISR);     
 
    /* write your code below */   /* clear source of interrupt */ 
    while(1) {      *pCOUNTER_STATUS = 1; 
 
  /* wait while KEY3 == 1 */   /* wheel spinning, apply brakes */ 
  while( (*pKEY & 8) )    if( counter >= 5 ) 
   *pLEDR = counter;     brake_flag = 1; 
          
  /* wait while KEY3 == 0 */   /* not spinning, pulse brakes 100ms*/ 
  while( !(*pKEY & 8) )    else 
   *pLEDR = counter;     brake_flag = !brake_flag; 
 
  /* count 0-to-1 transition */   /* show brake flag, reset counter */ 
  counter++;     *pLEDG = brake_flag; 
         counter = 0; 
 
    }       } 
} 
 
/* The main() routine above displays 
 * the value of counter on LEDR to aid 
 * debugging. Since the counter value can 
 * be reset at any time by cntrISR(), 
 * both while() loops must update LEDR 
 * continuously. 
 */ 
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Communication between ISR and Main Program  
 
One of the most difficult things to get correct is the communication between your ISR 
and the main part of your program. Getting the right behavior can be tricky because of 
very subtle timing bugs. You may not even notice the bugs right away because it works 
99.9999% of the time. However, you must be very careful to get it working 100% of the 
time – especially in mission-critical applications where human life is at stake (airplane 
controllers, nuclear power plant controls, missile guidance, medical instruments, etc). 
 
In C, communication between an ISR and main program occurs through shared 
(global) variables that are stored in memory. For example, consider the following 
main program fragment which increments a global variable: 
Main-C:  counter++;  /* increment a counter (global variable) */ 
 
Main-assembly: ldw r8, 0(r16) /* read value from memory*/ 
  addi r8, r8, 1 /* modify value */ 
  stw r8, 0(r16) /* write value back to memory */ 

…and the ISR contains code to decrement the same variable: 
ISR-C:  counter--; 
 
ISR-assembly: ldw r8, 0(r16) 
  subi r8, r8, 1 
  stw r8, 0(r16) 

This code has a problem: depending on exactly which instruction in Main-assembly is 
interrupted, the results can be catastrophically different. 

• First, consider what happens if the ldw in the main program is interrupted. The ISR decrements the 
counter first, the main program resumes, executes the ldw, reads the decremented value from 
memory, increments it, writes it back to memory. This produces the correct behavior: the net 
counter value is unchanged. 

• Second, consider what happens if addi or stw is interrupted instead. The ISR decrements the 
counter value, the main program resumes after the ldw and r8 contains the old counter value, so it 
increments this old value and it writes back to memory. This produces incorrect behavior: the 
net counter value is +1, and the decrement by the ISR is lost! 

 
This error occurs because both the main program and ISR are modifying shared variables. 
Any instruction sequences in the main program that use a series of statements to “read-
modify-write” the variable (eg, increment) must be protected from interruption. We call 
this sequence a critical section.  Critical sections must execute atomically, meaning the 
sequence of operations is indivisible: once started, it should finish without interruption. 
The solution is to momentarily disable interrupts in the main program: 
Main-C:  disableInterrupts(); /* start critical section */ 
  counter++; 
  enableInterrupts(); /* end critical section */ 
 
Main-assembly: wrctl status, r0 /* disable interrupts, start critical section */ 
  ldw r8, 0(r16) 
  addi r8, r8, 1 
  stw r8, 0(r16) 
  movi r8, 1 
  wrctl status, r8 /* enable interrupts, end critical section */ 

 
If an interrupt arrives during the critical section, it will not be lost. It will be executed as 
soon as interrupts are re-enabled. Thus, you should re-enable them as quickly as you can 
(no waiting or time delays).  

L34-1 



NAME: _________________________________________STUDENT #: ______________________ 
EECE 259: Introduction to Microcomputers  Lecture Quiz       Mar 24, 2011 

 

An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the 
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes 
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this 
restores tire traction. For this problem, write a main program and interrupt service routine to:  

• Detect wheel spin. First, your program should continuously poll KEY3 and count the number of 0-to-1 
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly, 
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the 
next 0-to-1 transition occurs.  However, you don’t know exactly when it will occur.  Hence, the polling of 
KEY3 must be done frequently enough to not miss any transitions! 

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to 
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected, 
suggesting the wheel is still spinning. . If fewer than 5 transitions have occurred, alternately apply & 
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning 
so you should apply the brakes again for the next 100ms. 

#include “259macros.h” 
 
/* global variables */ 
int counter = 0; 
int brake_flag = 0; 
      /* this ISR will be called every 100ms */ 
int main(...)     void cntrISR() 
{      { 
    initInterrupts();     /* remember: no waiting in here */ 
    enableCounterIRQ(100*ONE_MS,cntrISR);     
 
    /* write your code below */   /* clear source of interrupt */ 
    while(1) {      *pCOUNTER_STATUS = 1; 
 
  /* wait while KEY3 == 1 */   /* wheel spinning, apply brakes */ 
  while( (*pKEY & 8) )    if( counter >= 5 ) 
   *pLEDR = counter;     brake_flag = 1; 
          
  /* wait while KEY3 == 0 */   /* not spinning, pulse brakes 100ms*/ 
  while( !(*pKEY & 8) )    else 
   *pLEDR = counter;     brake_flag = !brake_flag; 
 
  /* count 0-to-1 transition */   /* show brake flag, reset counter */ 
  disableInterrupts();    *pLEDG = brake_flag; 
  counter++;     counter = 0; 
  enableInterrupts(); 
    }       } 
} 
 
/* The main() routine above displays 
 * the value of counter on LEDR to aid 
 * debugging. Since the counter value can 
 * be reset at any time by cntrISR(), 
 * both while() loops must update LEDR 
 * continuously. 
 * 
 * The disableInterrupts() and 
 * enableInterrupts() routines protect 
 * a critical section containing a 
 * read-modify-write sequence of the 
 * shared counter variable. 
 */ 
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UBC DE1 Media Computer – Devices that can Interrupt 
 
We have already presented the COUNTER device which uses pin IRQ3. The interrupt 
pins used for all devices are shown in Figure 2. 

• This is correct for the (v3) version of the UBC DE1 Media computer system. 
• The default Altera DE1 Media computer system assignments are slightly different. 

 
Using interrupts with the KEY device will be described below. For the remaining devices, 
you can read about how to configure and control their behavior with interrupts in the 
Altera DE1 Media Computer manual. This is located on the course web site in the 
(homework files) section as file DE1_Media_Computer.pdf. You can also find the file 
installed on your PC at a location like: 
C:\Altera\91sp2\University_Program\NiosII_Computer_Systems\DE1\DE1_Media_Computer\doc\DE1_M
edia_Computer.pdf 
 

Interrupt Device Description 
irq0 Countdown timer device 
irq1 KEY device 
irq2 GPIO1 port 
irq3 COUNTER device 
irq6 Audio device 
irq7 PS2 (mouse/keyboard) port 
irq8 JTAG terminal device 
irq10 RS232 port 
irq11 GPIO0 port 
Figure 2. Interrupt assignments in the UBC DE1 Media computer system. 

 
Interrupts Example – Using the KEY Device 
 
As a final example, we illustrate how to call interrupts when KEY3 or KEY2 are pressed 
in Figure 3. This program is just a small modification to the original example in Figure 1. 
The main changes are: 

• The subroutine call enableKeyIRQ( keys_to_watch, keyISR ); is used to 
initialize the KEY device to send interrupts. The first parameter, keys_to_watch, 
is a mask value which indicates which keys are allowed to send interrupts. In this 
example, only KEY3 and KEY2 are allowed to send interrupts. By writing the 
mask value to KEY_IRQENABLE, interrupts are enabled for those keys. The 
second parameter, keyISR, is the name of the ISR to be called. 

• keyISR() is executed via interrupt. Since the interrupt may be slightly delayed (eg, 
by a critical section or another ISR which has momentarily disabled interrupts), it 
is possible the key that was originally pressed has already been released. Hence, 
the value of *pKEY, which only contains live real-time status of the keys, is 
useless. Instead, the special location KEY_EDGECAPTURE is used. When a key 
is pressed, the rising edge sets the corresponding bit in KEY_EDGECAPTURE. 
The interrupt is cleared by writing 0 to KEY_EDGECAPTURE.  
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#include "259macros.h" 
 
/* global variables */ 
int counter = 0; 
int incr = 1; 
 
/* This ISR will be called every 100ms */ 
/* Display a counter on the red LEDs */ 
void counterISR() 
{ 
 /* remember: no waiting in an ISR */ 
 counter += incr; 
 *pLEDR = counter; 
  
 /* clear source of COUNTER interrupt before returning */ 
 *pCOUNTER_STATUS = 1; /* Device: send interrupts, clear existing interrupt */ 
} 
 
/* This routine configures device-specific details about interrupts */ 
void enableCounterIRQ( int interval_cycles, ptr_to_function newISR ) 
{ 
 registerISR( IRQ_COUNTER, newISR ); /* specify which ISR to call with COUNTER interrupts */ 
  
 *pCOUNTER  = -interval_cycles; /* initial counter value */ 
 *pCOUNTER_RELOAD = -interval_cycles; /* on overflow, start with this value */ 
  
 *pCOUNTER_STATUS = 1; /* Device: send interrupts, clear existing interrupt */ 
 enableInterrupt( IRQ_COUNTER ); /* CPU: allow it to receive COUNTER interrupts */ 
} 
 
/* This ISR will be called every time KEY3 or KEY2 is pressed */ 
/* On KEY3, change the increment direction */ 
/* On KEY2, load a new increment amount from switches */ 
void keyISR() 
{ 
 /* remember: no waiting in an ISR */ 
 int keypress = *pKEY_EDGECAPTURE; 
  
 if( keypress & 8 ) incr = -incr; 
 if( keypress & 4 ) incr = *pSWITCH; 
 
 /* clear source of KEY interrupt before returning */ 
 *(pKEY_EDGECAPTURE) = 0; 
} 
 
/* This routine configures device-specific details about interrupts */ 
void enableKeyIRQ( int keys_to_watch, ptr_to_function newISR ) 
{ 
 registerISR( IRQ_KEY, newISR );   /* specify which ISR to call with KEY interrupts */ 
 *pKEY_IRQENABLE = keys_to_watch; /* Device: to send interrupts for KEY3,KEY2 */ 
 enableInterrupt( IRQ_KEY );      /* CPU: allow it to receive KEY interrupts */ 
} 
 
 
int main( int argc, char *argv[] )                              
{ 
 int keys_to_watch; 
  
 /* CPU: clears all interrupt enables for individual devices, then enables interrupts */ 
 initInterrupts(); 
  
 /* Device: set up COUNTER to interrupt and call counterISR every 100ms. */ 
 enableCounterIRQ( 100*ONE_MS, counterISR ); 
  
  
 /* Device: set up KEY to interrupt every time KEY3 or KEY2 is pressed */ 
 keys_to_watch = 0x8 | 0x4 ; 
 enableKeyIRQ( keys_to_watch, keyISR ); 
 
 /* Main loop is busy doing nothing, forever */              
 while( 1 ) 
  ; 
  
 return 0; /* never gets here */ 
} 
Figure 3. Interrupts example in C using COUNTER and KEY. 
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An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the 
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes 
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this 
restores tire traction. For this problem, write a main program and 2 interrupt service routines to:  

• Detect wheel spin. First, your program should use interrupts with KEY3 and count the number of 0-to-1 
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly, 
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the 
next 0-to-1 transition occurs.  However, you don’t know exactly when it will occur.  Hence, use interrupts! 

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to 
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected, 
suggesting the wheel is still spinning. . If fewer than 5 transitions have occurred, alternately apply & 
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning 
so you should apply the brakes again for the next 100ms. 

#include “259macros.h” 
 
/* global variables */ 
int counter = 0; 
int brake_flag = 0; 
      /* this ISR will be called every 100ms */ 
int main(...)     void cntrISR() 
{      { 
    initInterrupts();     /* remember: no waiting in here */ 
    enableCounterIRQ(100*ONE_MS,cntrISR);     
    enableKeyIRQ( 0x8, keyISR ); 
    /* write your code below */    
    while(1) {      
 
 
 
 
 
 
 
 
 
       } 
 
       void keyISR() 
       { 
        /* remember: no waiting in here */ 
 
 
 
 
 
 
 
 
 
 
 
 } 
 
}        } 
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A NOTE TO 259 STUDENTS: 
 
Interrupts involve a lot of details. 
 
The details presented after this page provide further background on exactly what 
happens at the CPU logic and assembly code levels. This may better help you 
understand the previous pages, as they define exactly how interrupts work. It may 
also help you understand how use interrupts in assembly code for your project. 
However, I will not test you on this material specifically – it is too detailed, and it is 
best left as a reference manual that you consult during a project (not during an 
examination). 
 
I expect you to understand everything discussed prior to this page. In particular: 
 
From 259library.c: 
 
initInterrupts(); // clears history of all registered ISRs with IRQs, disables each specific device interrupt, 
enables CPU to receive interrupts 
 
enableInterrupts(); // interrupts can be received by CPU from any specific device interrupt that is enabled 
disableInterrupts(); // CPU ignores all interrupts 
 
enableInterrupt( IRQ_NUM );  // enables specific device interrupt to be received by CPU 
disableInterrupt( IRQ_NUM ); // CPU ignores specific device interrupt 
 
registerISR( IRQ_NUM, ISR_name ); // registers ISR_name with IRQ_NUM; interrupts received from 
IRQ_NUM will cause ISR_name() to be called for service 
 
You need to know the purpose of these functions and how to use them. 
 
You do not need to know the source code for these functions (although it is provided in 259library.c, and 
reading it may help you understand things better). 
 
From example code (irq-example.c, irq-example2.c): 
 
enableCounterIRQ( delay_amount, counterISR ); 
enableKeyIRQ( keymask, keyISR ); 
 
You need to know the purpose of these functions and how to use them. 
 
You need to be familiar with the internal details of these functions, but you do not need to memorize the 
internal details. If needed, I will provide (most of the) internal details on a test, but may leave blank 
sections. You may be asked to explain, alter, or fill in the internal details. 
 
------------- 
 
I cannot guarantee that quiz/exam question(s) on interrupts will be exactly like the Lecture Quiz. 
  


